
ion
the
y and
ns are

n use
cific.
g to
ming
here

client
wing

essage
Network Characterization Service Inquiry Protocol
Specification v1.1

Jin Guojun

DSD
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720

June 2000
Revised: April 18, 2001

Table of Content

1. Introduction 1
2. Reference 2
3. Inquiry data structure and request sequence 2
4. Commands 6
5. Status 14
6. Application programming interface 16
7. Use Cases 17
8. Who should use NCS and How to use NCS 17
9. Platform support 20

1. Introduction

This file provides inquiry protocol for clients obtaining NCS information remotely and applicat
programming interface (API) for modifying NCSD or pipechar. The protocol is described in
specification document, named NCS-IP, under design/ncsd/api directory in design repositor
netest/source/metric/ncs directory in the NCS distribution. Related data structures and definitio
in netest/include/ncs-api.h file.

The NCS-IP specifies a protocol rather than a program calling interface, Figure 1, so clients ca
any language to inquire information from a NCSD. Notice that this protocol is not language spe
Currently, a C api is available in library format. Any other language library can be build accordin
this specification and C library. For example, a python interface can be used for HTML program
in web design; or you may use Perl to inquire information from a NCSD. One thing to be cleared
is that no client programming needs to know NCSD data structure and implementation. The
programming only needs to know the inquiry sequence and data structure described in follo
paragraph and command specification. Notation (o) means a field is used for client sending m
to NCSD, and (i) is a field for client receiving message from NCSD.
Page 1

cture.
start
r to

ed as

data

data
s send
tatus
, i.e., a
use
eed to
3 to
Notice the naming convention: all variables are starting with the abbreviation of the data stru
For example, all variables in ncs_query_t start with nq_ , and all variables in ncs_hop_info_t
with nhi_ , etc. Also, the name "nq" will refer to a data instance of ncs_query_t; and "nri" will refe
a data instance of ncs_rtt_info_t; etc.

Note: this document is mainly for clients using. It explains some daemon requirement as notic
daemon. Otherwise, all explanation is for the client implementation.

2. Reference

netest/include/ncs-api.h in NCS distribution is a C header file that contains all bit definitions of
structure, inquiry commands, and status.

3. Inquiry data structure and request sequence

Figure 1 is the NCS inquiry protocol data structure. It is 8-byte long, and it is the primary
structure used for inquiry and data retrieve process. The inquiry sequence is very simple, client
command in data structure described in Figure 1 to a NCSD, and the NCSD will return inquiry s
and/or data in the same data structure to clients. This structure is called overlapped structure
structure cell (16-bit filed or 32-bit filed) can be used for different purposes. To be able to
distinguished names for different inquiries, a set of overlapped (pseudo) structure or aliases n
be created to mirror the retrieve data structure (the bottom half of the Figure 1) from Figure
Figure 5.

ncs_query_t: (will be referred as nq)

Figure 1: NCS API command and return data structure

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Byte 1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 Byte 8

nq_command
(o)

nq_cmd_flag
(o)

nq_path_id
(i/o)

nq_short_1
(i)

nq_datalen nq_flags

nq_hopID

nq_ipaddr

nq_stat
(i)

nq_io.ni_lsize (nq_size) (?)

nq_short_2 nq_short_3

nq_ret_long
Page 2

ngful
_id

y not

to

t.

idth,
both

d the
defined
ages
t float
and
Any request (command or inquiry) must send this data structure to a NCSD by filling in a meani
command or inquiry in nq_command field, with a valid nq_ipaddr (for init) or a valid nq_path
(after init) if the command is a path specific inquiry.

Straight commands or non-path related (specific) inquiry, such as NQ_DST_IN_CACHE, ma
require a nq_ipaddr or nq_path_id, but data. [data equivalent filed — d.e.f.]

nq_command: uint16_t command field
nq_path_id: uint16_t a path ID

aliases — nq_param for NQ_INIT_QUERY paramters
aliases — nq_cmd_flag for sending NQ_ command
aliases — nq_short_1 for NQ_SHORT_RET_{1S, 2, 3}
d.e.f. — nrh_path_id ncsd_return_hd_t

nq_datalen: uint16_t for non-initial requests (o) (no use)
aliases — nq_short_2 for return an int16 data (i)

nq_flags: uint16_t for both i/o
aliases — nq_hopID a node ID (TTL-1) (o)

nq_short_3 for return third int16 (i)
_ nq_ipaddr: uint32_t for merely NQ_INIT_QUERY

alias — nq_size: for return data size. It is also equivalent
ncsd_return_hd_t.nrh_size.

d.e.f. — nsr_ipaddr in ncsd_shared_t, or nrd_ipaddr ncsd_return_data_

Figure 2 shows two data structures for returning hop information, maximum and available bandw
and round trip time, minimum and average. These data structures are embedded in
ncsd_shared_t and ncsd_return_data_t.

The bandwidth (ncs_hop_info_t) uses 16-bit float data type. The exponent uses 4 bits, an
mantissa uses rest 12 bits, but the size of mantissa may vary between 10 and 12 bits and it is
as RateBITS in ncs-api.h. So, make sure to comply with it when you write APIs in other langu
other then C. Examples on how to convert data formats between regular float and this 16-bi
formats are described in NCS inquiry commands “NQ_GET_DBOTTLENECK_HOP
NQ_GET_SBOTTLENECK_HOP — 0x100, 0x200” on page 12.
.

Table 1: NCS 16-bit exponential data type format

nibble 1-3 nibble 4

mantissa exponent

Figure 2: Other embedded structures

1 2 3 4
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 7 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 7

1 2 3 4

nhi_max_BW nhi_avl_BW nri_rtt nri_avg_rtt

ncs_hop_info_t ncs_rtt_info_t
Page 3

data

stat ==
ad of
ormat
n 4 for
A regular reply starts with ncs_query_t (equivalent to ncsd_return_hd_t) data structure + any
with size indicated in nq_size (nrh_size) field.

A short format is returned by command NQ_SHORT_RET_??.
• NQ_SHORT_RET_1S: one short return value in ret_short_1 field
• NQ_SHORT_RET_1L: one long return value in ret_long_1 field
• NQ_SHORT_RET_2: one short and one long return values
• NQ_SHORT_RET_3: three short return values
• NQ_SHORT_RET_X: depends on inquiry request

Since ncsd_return_hd_t does not have nrh_short_2 and nrh_short_3, so, once detected nrh_
NQ_SHORT_RET_3, use ncs_query_t to get data in case of using ncsd_return_hd_t inste
ncsd_query_t. ncsd_return_hd_t is a symbolic data structure, which is used only in long data f
case. Normally, ncsd_query_t is used for sending command and receiving status, see sectio
details.

ncsd_return_hd_t:

Figure 3: return header data type

Byte 1-2 Byte 3-4 Byte 5-8

nrh_stat nrh_path_id nrh_size

ncsd_shared_t: — simple long format data

Figure 4: overlapped data structure of Figure 1

Byte-1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 Byte8

nsr_ipaddr
nsd_ti

(timestamp or anything else)nhi_max_BW nhi_avl_BW

nri_rtt nri_avg_rtt

ncsd_return_data_t: — variable length data format

Figure 5: user defined variable length data format

Byte 1-4 Byte 5-6 Byte 7-8 Byte 9-12 Byte 13-N

nrd_ipaddr nhi_max_BW nhi_avl_BW nri_rtt +
nri_avg_rtt

user data
if anynrd_ui.nu_iv - any int value
Page 4

ferent

_stat

either
e in the
ing
Some example of inquiry sequence is described in Figure 6. Inquiry process has two slightly dif
formats: long format and short format. The long format includes three steps:

• sending a command
• receiving a status and data length
• receiving data (in length indicated in nq_size)

The short format has only two steps:sendinga command andreceivingstatus + data, which can fit
into this 48-bit primary data structure (64 bits minus 16 bits used for state filed) in Figure 1.

This 48-bit data container can hold the maximum data in following format returned in the nq
field:

• NQ_SHORT_RET_1S: one short return value in ret_short_1 field
• NQ_SHORT_RET_1L: one long return value in ret_long_1 field
• NQ_SHORT_RET_2: one short and one long return values
• NQ_SHORT_RET_3: three short return values
• NQ_SHORT_RET_X: depends on inquiry request

That is, returned nq_stat (nrh_stat depending on which structure is using) field may contains
error codes, or successful states that include above short data formats, which tell what data ar
48-bit container, or the NQ_DATA_READY, which uses nq_size (nrh_size) to indicate the follow
data length for long data-return format.
Page 5

h.

d in nq.
eply.

0 if
ion at
wever,

s)
The example in Figure 6 shows both inquiry formats. More information can be found in ncs-api.

Notice that all data are in network byte order, and above example does not convert them!

4. Commands

All client requests should use a command/reply paired routine

SendCmd_RecvStat(fd, nq_p, command)

to send a command, because almost every command reply an either status or reverse comman
This routine will guarantee to read the reply to prevent a command channel blocked by a TCP r

Additional data can be I/Oed by read/write then.

Precaution --

The field -- nq_path_id -- in ncs_query_t data structure used for inquiry must be valid or
unknown for most QUERY related commands. Also, this field needs not hton?/ntoh?() operat
clients side because clients never use it for any operation except returning it to the daemon. Ho

Different data formats for retrieving data with total size at 48-bits boundary:

: * means no information is required for this filed.

If the stat field (byte 1-2) is not NQ_SHORT_RET_? (1S, 1L, 2, 3, X, see below for detail
then read more data in size of ntohl(nq.nq_size). This is the long format.

Figure 6: NCS inquiry sequence

Table 2: sending command to NCSD — write(tcp, &nq, sizeof(&nq))

byte 1-2 byte 3-4 byte 5-6 byte 7-8

NQ_GET_TOTAL_HOPS path_id (in number) * *

Table 3: receiving status from NCSD — read (tcp, &nq, sizeof(nq))

byte 1-2 byte 3-4 byte 5-6 byte 7-8

NQ_DATA_READY
NQ_SHORT_RET_2
NQ_ERRORS(ANY)

(in all cases)

number of hops
data size in the followed datagram

*
*

Table 4: receiving data from NCSD — read (tcp, data_p, nq.nq_size)

byte 1-2 byte 3-4 byte 5-6 byte 7-8

usec of timestamp when last time the path probed sec of timestamp
Page 6

rally,

IP,
ess.

this
the

d your
case; or
o, be

ion)

se
 later

te
(B2)

B0);

e.
if this field is used for returning other type of data, then it may need ntohs() at clients side. Gene
when using this field for other purposes, use its alias -- nq_short_1.

 MACRO --

Daemon side:
#define reply_nq(tcp, nq, status) {\

nq.nq_command = htons(NQ_STATUS);\
nq.nq_flags = htons(status);\
write(tcp, &nq, sizeof(nq));\

}

NQ_INIT_QUERY — 1 (0x1)

All clients contacting a NCSD for inquiry must start this command with a valid destination
then followed by level-2 commands. Server (Daemon) will return a path ID when INIT is succ
Clients may or may not need this ID for further inquiries; because the channel opened by
command will be used for this path by default. This ID may be used in other channels if
connection is closed. However, a path may be removed if no connection uses it. Once you close
default channel, you may get inquiry error because the path has been removed due to unused
you may get wrong information when this ID is reused by a new path due to cache purging. S
sure to check the return status when doing such inquiry (connectionless).

To implement this command, please refer to the ncsC_example.c.

Client side:

outgoing parameters:
nq_nq_ipaddr = destination IP

no htonl needed if the IP is from struct hostent *hp =gethostbyname(destinat
nq.nq_param = 0 wait until path info. is ready NS_READY.
NCMD_PARAM_WAIT_OK 0xFFFF no wait (no htons reqired because we u
symmetric data pattern); return whatever the status server has. Client will recheck it
NCMD_PARAM_SCHED_ONLY 0x0F0F followed by an 8-byte scheduling timestamp
NCMD_PARAM_COMBO 0x0E0E followed by an 8-byte data containing 1-by
(B0) number of probes (pd_nprobes); 1-byte (B1) sleep time (pd_slowtime); 1-byte
unused; 1-byte (B3)E flags; and 4-byte (B4-B7) scheduling timestamp.
Any non symmetric data will be treated as 1-byte number of probes (pd_nprobes in
and 1-byte sleep time (pd_slowtime in B1)

Once confirm the return status == NS_READY, then issue additional inquiry requests.
If status is not NS_READY and nq_path_id was not 0xFFFF, server may fail. Check error cod
Page 7

==
G.

csCapi

efore

.c)

ta size

e zero.
Daemon side:

Unless memory failure, it always return NS_READY if nq_path_id is 0. If nq_path_id
0xFFFF (no ntohs needed) and path is not existing, schedule the probe and return NS_PROBIN

NQ_DST_IN_CACHE — 2 (0x2)

See how many paths have been cached at a specific NCSD. This has been implemented in n
library as:

int NC_Query(pc_d_t *pcd_p)

Because this inquiry is not a path specific, so it needs not send a NQ_INIT_QUERY command b
this inquiry. That is, this inquiry can be sent directly to any NCSD.

 Daemon side:

To simplify the process, Do Not Return status by using MACRO — reply_nq (standard in ncsd

 nq.nq_command = htons(NQ_STATUS);
 nq.nq_flags = htons(status);

Just simply return a command by using standard data return procedure — 4-Byte command/da
+ nq_size-Byte data:

ncsd_cache_info_t* nci_p; // cache pointer
// npcd is number ncs cached on ncs path list

 nq.nq_command = htons(NS_DONE);
 nq.nq_size = htonl(npcd * sizeof(*nci_p));
 write(ncsd_ctl, &nq, sizeof(nq)
 if (!npcd)

break; /* nq.nq_size is Zero :-)*/
/* if non-zero, send cache info.*/
 write(ncsd_ctl, nci_p, npcd * sizeof(*nci_p));

Client side:

outgoing parameter: None
Decode data according above order. In case of a NCSD cache is empty, the nq.nq_size will b
Page 8

ncsd

ndle

n will

path

the
NQ_REMOVE_QUERY — 3 (0x3)

Remove a path from a specific NCSD. This command can be issued only by the initiator or the
host.

Implemented as RemovePath(pc_d_t *pcd_p) in ncsCapi library.

 Daemon side:

check if the target exists. If not, reply_nq(tcp, nq, NS_NONEXIST).
check if the requester is the initiator or the daemon host, do it if true, or go to error ha

(rpy_fatal).
After successfully removing a path, NCSD will close this connection; otherwise, the connectio

be left open.

Client side:

outgoing parameter:
nq_ipaddr = destination of the path to remove

NQ_STATUS — 7 (0x7)

 Daemon side:

Return specific NCSD status by using

reply_nq(tcp, nq, (l_pcd.pd_flags & NQ_STAT_MASK).

 Client side:

outgoing parameter: None
check nq.nq_command == NQ_STATUS, then nq.nq_flags == ?

NCHG_NumProbes — 48 (0x30)

NCHG_BurstSize — NCHG_NumProbes + 1

Change NCSD parent configuring parameters. These command will NOT change existing
configuring parameters, i.e., it only affects new paths.

Daemon side:

Return NS_DONE by reply_nq(tcp, nq, NS_DONE), or reply_nq(tcp, nq, NS_FATAL) if
value is out of range.
Page 9

ns. A

ill close

nq(tcp,
Client side:

outgoing parameter:
nq_flags = htons(value)

Check return status for determining whether success or not.

NCMD_NCSD_EXIT — 64 (0x40)

Instruct a NCSD to exit and save its cache info. This may not be implemented on all daemo
alternative way to do so is using "kill":

kill -INT `ps axuwg | grep ncsd | awk '{print $2}'`

 Client side:

outgoing parameter: None

need to read nq back regardless if checking the status or not because the daemon side w
the connection, and we do not want the connection lingers.

NCMD_MERGE_CACHE — 65 (0x41)

Send a cache file to a NCSD for merging. (under revising)

 Daemon side:

Returns the number of entries has been merged into the cache in nq.nq_short_1 by reply_
nq, NS_DONE).

 Client side:

Must read nq back regardless if checking the status or not.

NCMD_En_ACTIVE_SERVICE — 66

NCMD_De_ACTIVE_SERVICE — 67

Not implemented.
Page 10

status
NCMD_RESERVED_128 — 128 (0x80)

reserved.

NCMD_START_MONITOR and NCMD_STOP_MONITOR — 161, 162 (0xA1, 0xA2)

Start monitoring on a merged path, or resume a stopped path.

Stop monitoring (scheduling re-probing) on a path.

reply_nq(tcp, nq, NS_DONE) or goto rpy_fatal if permission is denied.

 Client side:

outgoing parameter:
nq_path_id = 0 (do not need NQ_INIT_QUERY)
nq_ipaddr = destination IP address of a path to start/stop

A subroutine NCS_ConfirmReq() in C takes care this procedure. The client must read nq for
checking. See examples at main() in ncsC_example.c:

ncsC_example.c :: main(...) {
...

if (ncmd == NCMD_START_MONITOR) {
ncmd = NCS_ConfirmReq(u_pcd.pd_raw, ncmd, dest_name_or_IP);
if (ncmd != NS_DONE)

prgmerr(-1, "NCMD RET Status = %s\n", NCS_CodeToName(ncmd));
}

...
}

NQ_NOP — 246 (0xF6)

No real operation. This may used for passive monitoring and exchanging some information.

 ----- inquiry commands ----- Level-2 commands

NQ_GET_ALL and NQ_GET_INFO — 0x7F00, 0x0F00

No definition yet. May not be needed if clients can use other commands to do so.

No implementation on server side.
Page 11

ork
and

os —

hich

t —
 NQ_GET_DBOTTLENECK_HOP and NQ_GET_SBOTTLENECK_HOP — 0x100, 0x200

Implemented as a ncsCapi library routine

Get_Bottleneck(pc_d_t *pcd_p, ncsd_shared_t *nsp, int Xbn, bool prt)

Xbn can be either NQ_GET_DBOTTLENECK_HOP or NQ_GET_SBOTTLENECK_HOP. Netw
byte ordered data is stored in nsp->nsd_hi.nhi_avl_BW for NQ_GET_DBOTTLENECK_HOP,
nsp->nsd_hi.nhi_max_BW otherwise.

Note: section 3 has addressed NCS float data type (ExpBW). Here is the data conversion macr

Daemon side: // convert float (real) number to 16-bit float

#define RealBW_to_ExpBW(rbw, ebw) { \
register int i, v = rbw; \
 for (i=0; v > MAX_RATE_MANTISSA; ++i)\

v >>= SHIFT_BITS_4_1K; \
 ebw = (i<<RateBITS) | v; \

}

Client side: // convert 16-bit float to integer
#define ExpBW_to_LongBW(ebw)\

((ebw & RATE_MANTISSA_MASK) << ((ebw >> RateBITS) * SHIFT_BITS_4_1K))

outgoing parameter:
nq_path_id = path_id returned from NQ_INIT_QUERY command.

NQ_GET_BOTTLENECKS — 0x300

No implementation at server (daemon) side. It is currently substituted by Get_Bottleneck(...), w
does both NQ_GET_DBOTTLENECK_HOP and NQ_GET_SBOTTLENECK_HOP, in C.

 NQ_GET_RTT — 0x400

C API uses Get_RTT_n_TCPWin() to cover it and TCP Window Size.

Returns both min RTT (in nri_rtt) and average RTT (in nri_avg_rtt) in standard (long) forma
4-Byte NQ + N-Bytes NR. These values are in 0.1 ms !!!

outgoing parameter:
nq_path_id = path_id returned from NQ_INIT_QUERY command.
nq_hopID = htons(hop #) for getting RTT. Must be less than the maximum hops.
Page 12

t.

eried
D for

from
can be
_t if

ed in

long
in
NQ_GET_RTTS — 0x500

Returns RTT for each hop (node).

No implementation on server side. Use NQ_GET_RTT or NQ_GET_HOP_INFO for the momen

NQ_GET_HOP_INFO — 0x0C00

Implemented as a information printing routine

bool Get_HopInfo(pc_d_t *pcd_p, ncsd_return_data_t *nrp, bool prt)

in ncsCapi library. One can modify this routine to allocate hop_info_t for each link, and store qu
data in there for returning. nq.nq_hopID contains node ID and nq.nq_path_id contains path I
inquiry.

NQ_GET_TOTAL_HOPS — 0x1000

Implemented as Get_N_Hops(pc_d_t *pcd_p) in ncsCapi library for clients.

Get total number of hops for path (pc_d_t *pcd_p). It is stored in pcd_p->pd_nhops which is
nq.nq_short_1 returned by a daemon in both forms used below. The last update timestamp
returned in either standard form -- nq.nq_size (in 4-Byte NQ) + ==> N-Byte NR : ncsd_shared
timestamp requires high resolution (sec + usec). Otherwise, the timestamp will be return
nq.nq_ret_long by short cut form.

Client side:

outgoing parameter: None

NQ_GET_BEST_TxWIN — 0x2000

return the best TCP transmission (Tx) window size in KBytes. The value is in nq_p->nq_ret_
(or nrh->nrh_size) returned in short cut format -- 4-Byte quick reply. It is integrated
GET_RTT_n_TCPWin().
Page 13

g the

ith a
5. Status

NS_INITIALIZED — 0x0100

A path connection exists, so further inquiry can be proceeded.

 NS_PROBING — 0x0200

Specified path is under probing. Inquiry needs to wait until probing to finish.

 NS_READY — 0x0300

This path is ready for inquiry.

 NS_STOPPED — 0x400

This path has been stopped for scheduling re-probing, but inquiry is acceptable for gettin
latest monitoring status.

 NS_DONE — 0x800

This confirms a previous command/inquiry is successfully done.

 NS_NONEXIST — 0x1000

required path does not exist for inquiry.

NS_RTCHANGE — 0x1100

Routing path changed during the path probing.

 NS_UNREACH — 0x1200

The destination is not reachable (due to not alive or other problems).

 NS_FATAL — 0x2000

Command or inquiry is failed due to either unimplemented or wrong parameters. Check w
specific command for detailed error information.

NS_MULTIP — 0x4000

A multiple-path enquiry is allowed.
Page 14

 NR_COMPLETED — 0

A pseudo bit-mask indicator (Do NOT Use it). Use NR_PARTIAL for real mask operation.

NR_PARTIAL — 0x8000

A bit-mask to see if a task sent to ncs server (daemon) is completed or partially completed.
Page 15

rough

n is
x_ttl

some
so the
f the
as set

ling

s are
turns

ally,
r may
caller
nly set
ed by
6. Application programming interface

CanUse_UDP(pc_d_t*, int wait_time_in_ms)

check on if a remote mutual server exists, or the UDP discard port is configured, so we can th
UDP packets instead of ICMP to a destination for throughput probing.

wait_time_in_ms is the maximum time for this routine to use. Once exceeded, retun failure.

PingHost(pc_d_t *, int app_default_ttl)

To see if the destination is alive; returns 0 if destination is not alive, or the RTT if destinatio
online as well as sets the total hops in pcd_p->pd_max_ttl = 256 - ip->ip_ttl if the pcd_p->pd_ma
is not the same as app_default_ttl; notice that ip->ip_ttl may not be deduced correctly in
platform. This is the reason to add the second parameter — app_default_ttl — in PingHost(),
application can control whether it wants the PingHost() to set pd_max_ttl from the ICMP reply (i
pd_max_ttl == app_default_ttl); otherwise, leave the pd_max_ttl unmodified (because the user h
it to a value the user wants).

It may get addresses of the first 9-hop in reverse routing if it is available at compi
(IP_OPTIONS).

FindPath(pc_d_t*)

This procedure uses ping_host() to the total hops. Then, call global service to see if any link
existing; if so, load them into the pc_d_t structure and fill in their owner structure, done. Re
number links (hops) are found.

AnalyzePath(pc_d_t*, int lesshop, bool force_thr)

NCS probing for hops (links) specified in pd_min_ttl and pd_nhops - lesshop + forcethr. Usu
lesshop is set to the number of retries. That is, every time we retry (reenter this function), calle
reduce one hop (a link) due to either that hop is not reachable or routing problem. We say "
may" because the caller has the choice. For example, the pipechar has three retries and o
lesshop to 1 when the number of retry is equal to the maximum tries. forcethr is the status return
this function and set to either =(nhops-retv) or =(retv > 0) to force re-probing more links.

 Returns 0 on successful, or n hops left when routing changed.
Page 16

d for
torage
dwidth
y; for

etwork

n this
D
mand
7. Use Cases

This section describes what is the NCS design for.

8. Who should use NCS and How to use NCS

The NCSD is designed in purpose of being a generic network information service. It is use
applications that need to gain the best network throughput, such as ftp clients/servers, network s
systems, remote file systems, etc.; for applications that need to do QoS, such as available ban
based queuing; for applications that need to control network traffic, such as adaptive gatewa
users who need to know the network status, e.g., system administration personnels, n
managers.

Usually, system administration and network diagnosis may require frequent network probe. I
case, using a command line tool —pipechar— may be more convenient than rescheduling NCS
for reprobing. Below is some NCS use cases of inquiry procedures in both program and com
methods.

path Inquiry

path info. exists

NCS User API Global Service

No path found in database
path assembling

NCS Core

pr
ob

e
un

kn
ow

n
lin

ks

new path info.

se
t i

n
ca

ch
e

return info. to the user

Figure 7: NCS inquiry sequence

Command to change parameters for entire system or a particular path

NCS
com
mand
handl
er

TCP

Clients
Page 17

1. Inquiry optimized TCP congestion window size for best TCP throughput:

Get_TCP_CongestWindow(dest_IP/NAME)
{
ncs_query_tnq;
int tcp = open a socket(TCP, NCSD_SERVICE_PORT);

return error if fails;
gethostbyname(dest_IP/NAME)

Loop { // initialize inquiry for the path to destination
copy dest IP into nq.nq_ipaddr;
n = SendCmd_RecvStat(tcp, &nq, NQ_INIT_QUERY);
if (n > 0) {

if (nq.nq_command == NQ_STATUS){
if (nq.nq_flags == NS_PROBING)

continue; // not ready yet, so go back to loop;
break; // data is ready

}
}

nq_p->nq_path_id = 0; // must be a valid even not use it!
if ((value = SendCmd_RecvStat(tcp, nq_p, NQ_GET_BEST_TxWIN)) >= 0) {

value = ntohl(nq.nq_ret_long);
// otherwise, value = error code
close(tcp);

return value;
}

2. A program example of getting the dynamic bottleneck of a path for
congestion control:

GetDynamicBottleneck(dest)
{
ncs_query_tnq;
ncs_shared_t ns_p = &nq;

do NQ_INIT_QUERY same as in example 1).

if (SendCmd_RecvStat(pcd_p->pd_raw, &nq,NQ_GET_DBOTTLENECK_HOP) >= 0
&& ntohs(nq.nq_stat == NQ_DATA_READY)
value = ntohs(ns_p->nsd_hi.nhi_avl_BW);

else value = ERROR;

close(tcp);
return value;
}

Page 18

one
-time
If multiple inquiries needed, the NQ_INIT_QUERY and NCSD TCP connection should be d
outside of inquiry body to reduce the overhead. Above examples are simple one
inquiries.

3. Use command line tool to inquire a path information to find the bottleneck
(network managers can use this method to analyze a path). Option "-l" is
for penetrating firewalls or non responsive routers/switches:

pipechar -l yukon.mcs.anl.gov

0: localhost [9 hops]
 1: 16.0s ir100gw-r2.lbl.gov (131.243.2.1) 0.28 0.74 1.66ms
 2: 16.4s er100gw.lbl.gov (131.243.128.5) 0.23 -3.00 5.80ms
 3: 16.0s lbl2-gig-e.es.net (198.129.224.2) 0.21 0.26 1.35ms
 4: 16.1s snv-nton-lbl2.es.net (134.55.208.182) 0.26 0.20 4.75ms
 5: 19.2s chi-s-snv.es.net (134.55.205.102) 0.29 0.47 52.09ms
 6: 3.6s anl-chi-ds3.es.net (134.55.208.150) 3.41 4.38 69.05ms
 7: 2.4s anl-esanl2.es.net (198.124.254.166) 3.58 4.63 77.14ms
 8: 6.6s stardust-msfc-20.mcs.anl.gov(140.221.20.124) 3.54 5.77 66.34ms
 9: 7.2s tundra.mcs.anl.gov (140.221.9.176) 3.27 3.79 63.61ms

PipeCharacter statistics: 80.68% reliable
From localhost:
| 261.818 Mbps possible GigE (980.6149 Mbps)

1: ir100gw-r2.lbl.gov (131.243.2.1)
|
| 300.797 Mbps unKnown link ??? congested bottleneck <68.4211% BW used>
2: er100gw.lbl.gov (131.243.128.5)
|
| 325.409 Mbps unKnown link ??? congested bottleneck <66.0377% BW used>
3: lbl2-gig-e.es.net (198.129.224.2)
|
| 278.840 Mbps unKnown link ??? congested bottleneck <71.8750% BW used>
4: snv-nton-lbl2.es.net (134.55.208.182)
|
| 990.290 Mbps GigE <13.2198% BW used>
5: chi-s-snv.es.net (134.55.205.102)
|
| 44.319 Mbps T3 <53.0654% BW used> May get 91.35% congested
6: anl-chi-ds3.es.net (134.55.208.150)
|
| 19.711 Mbps unKnown link ??? congested bottleneck <55.2448% BW used>
7: anl-esanl2.es.net (198.124.254.166)
|
| 20.180 Mbps unKnown link ??? congested bottleneck <54.8150% BW used>
8: stardust-msfc-20.mcs.anl.gov (140.221.20.124)
| 21.985 Mbps possible 100BT (95.8805 Mbps)

9: tundra.mcs.anl.gov (140.221.9.176)
Page 19

IPv4
timer
4. A NCS client use API to inquire the same destination from a NCSD:
(option "-ah" ask for return all hops’ info)

ncsC -ah yukon.mcs.anl.gov
IP = 131.243.2.35
9 hops to yukon.mcs.anl.gov: last update at Fri Jun 1 09:42:04 2001

hop 1: 131.243.2.1: BW avl 413 Mb max 953 Mb; RTT min 0.7 avg 2.0 ms
hop 2: 131.243.128.5: BW avl 255 Mb max 593 Mb; RTT min 0.9 avg 1.1 ms
hop 3: 198.129.224.2: BW avl 381 Mb max 953 Mb; RTT min 0.9 avg 1.1 ms
hop 4: 134.55.208.182: BW avl 259 Mb max 593 Mb; RTT min 3.0 avg 3.3 ms
hop 5: 134.55.205.102: BW avl 940 Mb max 954 Mb; RTT min 50.8 avg 59.5 ms
hop 6: 134.55.208.150: BW avl 18 Mb max 42 Mb; RTT min 53.5 avg 64.6 ms
hop 7: 198.124.254.166: BW avl 17 Mb max 42 Mb; RTT min 53.6 avg 67.4 ms
hop 8: 140.221.20.124: BW avl 17 Mb max 95 Mb; RTT min 54.1 avg 54.7 ms
hop 9: 140.221.9.176: BW avl 20 Mb max 95 Mb; RTT min 54.1 avg 54.4 ms
hop 7: 198.124.254.166: Dynamic bottleneck -- BW 17 Mb
hop 6: 134.55.208.150: Static bottleneck -- BW 42 Mb

9. Platform support

NCS is currently tested on following O.S. platforms:

• FreeBSD (best performance)
• BSD/OS and possible all other BSD O.S.s
• Linus
• Solaris
• IRIX
• Digital UNIX

It does not and will not run on T3E due to T3E compiler has no 16-bit integer type.

The generic NCS functions should be able to compile and run on platforms that comply with
standard. Only kernel timer related functions need to FreeBSD KLD mechanism, so that kernel
related functions only available on FreeBSD platform.
Page 20

	Network Characterization Service Inquiry Protocol Specification v1.1
	Jin Guojun
	DSD
	Lawrence Berkeley National Laboratory
	1 Cyclotron Road, Berkeley, CA 94720
	June 2000
	Revised: April 18, 2001
	1. Introduction
	2. Reference
	3. Inquiry data structure and request sequence
	Figure 1 : NCS API command and return data structure
	Figure 2 : Other embedded structures
	Table 1: NCS 16-bit exponential data type format
	Figure 3 : return header data type
	Figure 4 : overlapped data structure of Figure 1
	Figure 5 : user defined variable length data format

	Table 2: sending command to NCSD — write(tcp, &nq, sizeof(&nq))
	Table 3: receiving status from NCSD — read (tcp, &nq, sizeof(nq))
	Table 4: receiving data from NCSD — read (tcp, data_p, nq.nq_size)
	Figure 6 : NCS inquiry sequence

	4. Commands
	NQ_INIT_QUERY — 1 (0x1)
	NQ_DST_IN_CACHE — 2 (0x2)
	NQ_REMOVE_QUERY — 3 (0x3)
	NQ_STATUS — 7 (0x7)
	NCHG_NumProbes — 48 (0x30)
	NCHG_BurstSize — NCHG_NumProbes + 1
	NCMD_NCSD_EXIT — 64 (0x40)
	NCMD_MERGE_CACHE — 65 (0x41)
	NCMD_En_ACTIVE_SERVICE — 66
	NCMD_De_ACTIVE_SERVICE — 67
	NCMD_RESERVED_128 — 128 (0x80)
	NCMD_START_MONITOR and NCMD_STOP_MONITOR — 161, 162 (0xA1, 0xA2)
	NQ_NOP — 246 (0xF6)
	----- inquiry commands ----- Level-2 commands

	NQ_GET_ALL and NQ_GET_INFO — 0x7F00, 0x0F00
	NQ_GET_DBOTTLENECK_HOP and NQ_GET_SBOTTLENECK_HOP — 0x100, 0x200
	NQ_GET_BOTTLENECKS — 0x300
	NQ_GET_RTT — 0x400
	NQ_GET_RTTS — 0x500
	NQ_GET_HOP_INFO — 0x0C00
	NQ_GET_TOTAL_HOPS — 0x1000
	NQ_GET_BEST_TxWIN — 0x2000

	5. Status
	NS_INITIALIZED — 0x0100
	NS_PROBING — 0x0200
	NS_READY — 0x0300
	NS_STOPPED — 0x400
	NS_DONE — 0x800
	NS_NONEXIST — 0x1000
	NS_RTCHANGE — 0x1100
	NS_UNREACH — 0x1200
	NS_FATAL — 0x2000
	NS_MULTIP — 0x4000
	NR_COMPLETED — 0
	NR_PARTIAL — 0x8000

	6. Application programming interface
	7. Use Cases
	Figure 7 : NCS inquiry sequence

	8. Who should use NCS and How to use NCS
	1. Inquiry optimized TCP congestion window size for best TCP throughput:
	2. A program example of getting the dynamic bottleneck of a path for congestion control:
	3. Use command line tool to inquire a path information to find the bottleneck (network managers c...
	4. A NCS client use API to inquire the same destination from a NCSD:

	9. Platform support

